


Mathematical Task Analysis – Stair Case Problem

Big mathematical ideas teachers need to understand that the Staircase problem affords:
1. Understanding recursive forms of describing growth
2. Understanding closed forms for describing growth
3. Being able to construct closed form from recursive form 
4. Understanding the values and drawbacks of both recursive and closed forms.
5. Being able to identify and describe characteristics of linear and quadratic functions as they appear in a) geometric representations, b) numeric representations like in table form, and c) graphical clues  
6. Mathematical reasoning behind various representations
7. Mathematical connections among various representations (context, abstract/symbolic, table, graph, diagram)
8. What various representations highlight mathematically, and why shifting stairs into different patterns but maintaining the mathematical nature helps surface various features of the mathematics.  
9. What everyday or scientific contexts could yield the same numerical values as the Staircase.
10. Mathematically similar problems that would allow for practice, assessment, development or application of these mathematical principles.
11. CCSS-M: A-SSE.1-3, F-IF.3, F-IF.5, F-IF.7a, F-IF.8, F-BF (also, to some extent: F-IF.2, F-IF.4, F-IF.6)

Pedagogical ideas of value 
12. What are common errors
13. What are common challenges people face in this task (like getting stuck in recursion)
14. Importance of making connections between representations and rules in learner’s sense-making (developing coherence)

Standards for Mathematical Practices (could be more, but these seem to be most relevant)
15. SMP 2 Reason quantitatively (understand variables and relationships)
16. SMP 3: Make conjectures, justify conclusions, communicate them, listen to and respond to others’ thinking.
17. SMP 7: Look closely to discern a pattern or structure, make use of structure


Problem Solving Strategies

The general problem is to find an expression for S(n), the number of squares in the staircase pattern at stage n.  This S is a function defined on the set of positive integers (or possibly the non-negative integers).

In contrast with the Growing Dots problem (a linear pattern), this problem turns out to have a quadratic formula that expresses S(n).  How might a problem solver discover that this function S is not linear and, after that, move to finding a solution?

· If the student forms a table, the differences between successive stages are not constant, so the formula cannot be linear.  Moreover, the differences get larger at every stage, so the function S(n) must grow more rapidly than any single linear function.

· But the differences themselves are linear:  S(n) – S(n-1) = n.  So the student may know enough about difference equations to know that a function with linear differences is quadratic.  If not, the student may guess that S is quadratic, since that is the simplest kind of function that is not linear. However, they may also guess that S is exponential, but can compare the rates of growth to see that it is not. 

· The student may notice that the problem of the number of squares can be interpreted as an area problem, where the area is approximately half a square of area n2.  So this leads to the conjecture that S is quadratic with leading term n2/2.
1. Numerically
a. By building a Table there are numerous was to explore the problem and discover the recursive rule.

	Level
	Number of Squares in each row

	1
	1

	2
	3

	3
	6

	4
	10

	
	

	N
	N(N+1)/2



i. What is the next row in terms of the last row (Now/Next)?
	Row
	Number of Squares in each row
	

	1
	1
	1

	2
	3
	1+2

	3
	6
	3+3

	4
	10
	6+4

	
	
	

	Next Row
	Last row + Row Number
	

	N
	Un= Un-1 + N
	



ii. What is the next row in terms of all of the previous rows?
	Row
	Number of Squares in that row
	

	1
	1
	1

	2
	3
	1+2

	3
	6
	1+2+3

	4
	10
	1+2+3+4

	
	
	

	Next Row
	
	1+2+3+4+…+Row Number

	N
	
	Un= 1+2+3+4+…+N



iii. If we want to find the closed form of the rule, we can use the table and try to factor the values in the number of squares in each row.  But the factoring is not obvious.  As a ‘guess & check’ method, we double the values and try to factor each.  Since these values are easily factorable, then we factor them and find the rule for the doubled values as (n)(n+1).  To generate the rule for the true values, we need to divide by 2  (n)(n+1)/2.

	Row
	Number of Squares in each row
	Doubled values

	1
	1
	2=1*2

	2
	3
	6=2*3

	3
	6
	12=3*4

	4
	10
	20=4*5

	
	
	

	n
	   (n)(n+1)/2       
	(n)(n+1)



iv. If we were to look at the nth term as an n x n square minus the n-1th term, then we could write a recursive rule as:  Un = N2-Un-1.
[image: ]      [image: ]  [image: ]
v. Putting two of the recursive forms together we have:
Un = N + Un-1 
Un = N2-Un-1   and by adding them together we get
2Un= N2 + N  and by dividing by 2 we get a nice version of the closed form of the rule:  So Un= (1/2)(N2 + N )
2. Algebraically:
a. Finite Difference:
i. What is the relationship between the rows?  What are the finite differences?  And what do they tell us?
	Level
	Number of Squares
	First difference
	Second difference

	0
	0
	
	

	1
	1
	1
	1

	2
	3
	2
	1

	3
	6
	3
	1

	4
	10
	4
	1

	
	
	
	

	
	
	
	

	N
	N(N+1)/2
	N
	1



If the first difference is linear then the polynomial form of the rule must be quadratic.  Or if the second difference is always the same (1), then the closed form of the rule is known. By taking three of our values, we can generate the rule from the general form f(x) = ax2+bx+c  where f(x) is the number of squares.  Since f(0)=0, then f(0) = a02+b0+c = 0 or c=0.  And f(1) = a12+b1+0 = 1 or a+b=1 and f(2) = a22+b2+0 = 3 or 4a+2b=3.  This gives us a pair of equations a+b=1 and 4a+2b=3 with two variables (a & b) to solve for.  So 2a=1 or a=1/2.  And thus b=1/2 and our rule becomes f(x) = 1/2 x2+1/2x 0r 1/2 (x2+x) or (x2+x)/2 or (x)(x+1)/2. We could also generate the table with first and second differences for the general form f(x)=ax2+bx+c and note that the second common difference is 2a, so since in this case, 2a=1, a=1/2.

3. Geometrically – the Area model where the number steps is equivalent to the area of the steps – assuming that the area of the single step is 1:
a. Finding the area of the big triangle and the small triangles:
[image: ]
i. The area is the sum of the area of the grey triangle plus the area of the smaller triangles.  Or 1/2 n2 plus n (1/2) since the area of the smaller triangles is 1/2 the area of the smaller squares.  Or (1/2)(n2+n).
b. Find the area of the two sets steps put together.
[image: ]
i. The area of the rectangle will be (n)(n+1), since the length of one the dimensions is always 1 more than the length of the other.  And the area of the steps would be 1/2 the area of the rectangle.  So the number steps = (1/2)(n)(n+1).  This solution relates to numerical solution 3 where each output value was doubled in order to better discern a pattern that was more easily factored. A rectangle with whole number side lengths is easy to write explicitly as a product. 

c. Finding the area of the single set of steps by decomposition using a Gaussian methodology.  
i. If n is odd (five in this case), then the base remains as n and the height becomes 1/2(n+1).  This provides us with an area of 1/2(n+1)(n)

[image: ]
ii. If n is even (six is the next case), then if we cut the stairs off at the mid-segment and flip the top over on to the bottom portion so that the single top step fits in at the right of the bottom, the height becomes n/2 and the base becomes (n+1).  And so the area becomes (n/2)(n+1) or 1/2(n)(n+1).
[image: ]

Note:  There seems to be a plethora of different versions (over 100 in at least 8 languages) about how the young Gauss was supposed to have summed the numbers from 1 to 100.

iii. Another geometrical form would be to take the given stair, rotate 180 around the point in the center of the stair steps and stack it on top of the stairs.  
[image: ]   [image: ]

iv. This will produce an n x n square with n over-lapped smaller squares along the diagonal.  

[image: ]	
So to find the area for the steps we need to first find the area of the larger square and the over-lapped diagonal squares n2 + n.  since that would be twice the area of the two sets of stair steps, the area of only one would be n2+n/2 or (n)(n+1)/2.
v. We could do something very similar with the two pieces, but rather than overlap them, link them at their vertices and fill in the diagonal with n+1 squares (like a zipper). Then, we’d have a total area of (n+1)2 and to find the number of squares in the stage, we would need to first subtract off the diagonal (n+1), then divide by 2. This would give us [(n+1)2-(n+1)]/2, and would be a good illustration of working backwards, then when the numerator is factored, gives a nice illustration of A-SSE.2.
vi.  By drawing an auxiliary line from the right side of the top step to the right side of the top of the bottom step, you create a trapezoid.  The extra triangular pieces fit into the missing pieces with pieces at the top fitting into the pieces at the bottom and pieces near the bottom fitting into the holes near the top. (What mathematical reasoning do we use to ensure this?) The area for the trapezoid would be (1/2)(b1+b2)(h) or for this case, (1/2)(n+1)(n) or (n+1)(n)/2.  
[image: ]
4. 
Graphically: noticing the graphical characteristics to determine that it is quadratic and to find the values of a, b, and c.
[image: ]
On this graph it looks almost linear, but if we look for a constant rate of change between consecutive natural numbers, we see that it is not linear. However, we do notice a linear pattern in the change, so know it is quadratic. As the change in stage # goes up by 1, the change in the number of squares is one more than the change in the previous stage number. We could use this pattern to reason that Stage 0 would have 0 squares (since the difference in the outputs would be 1), so c=0. Since c=0, we only have f(x)=ax2+bx. The next difference (going left) would be 0, so the graph would intersect the x-axis again at -1, and the vertex would be at x=-1/2. So, how could we find the y-value of the vertex by reasoning graphically? The x-intercepts of this function are at x=0 and x=-1; and c=0 gives us f(x)=ax(x+1). We also know that the graph passes through (1, 1), so 1=a(1)(2) gives us a=1/2. Thus, we have f(x)=.5x(x+1).


The student work for this task was originally developed in the Mathematics Content Collaboration Communities project. This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ . Except where otherwise noted, RAMP-A materials, by Eastern Washington University are licensed under a Creative Commons Attribution 4.0 International License.
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