

JANTHINOBACTERIUM LIVIDUM

Monique's summer research project

Mentor : Dr. Ben Lungdren

KEY WORDS & EXPLANATION

RPON

A process in which scientist can learn how bacteria make things they need to survive and grow.

GRAM NEGATIVE

A tougher bacteria with a protective layer and prone to turn red/ pink. Used to tell what kind of bacteria it is

GENE TRANSMISSION

Genetic information passed to offspring

GENE EXPRESSION

How gene can control the way they are expressed or placed when pressured to adapt to environment.

ENVIRONMENTAL STRESS

a concept in which you put pressure

VIOLACEIN

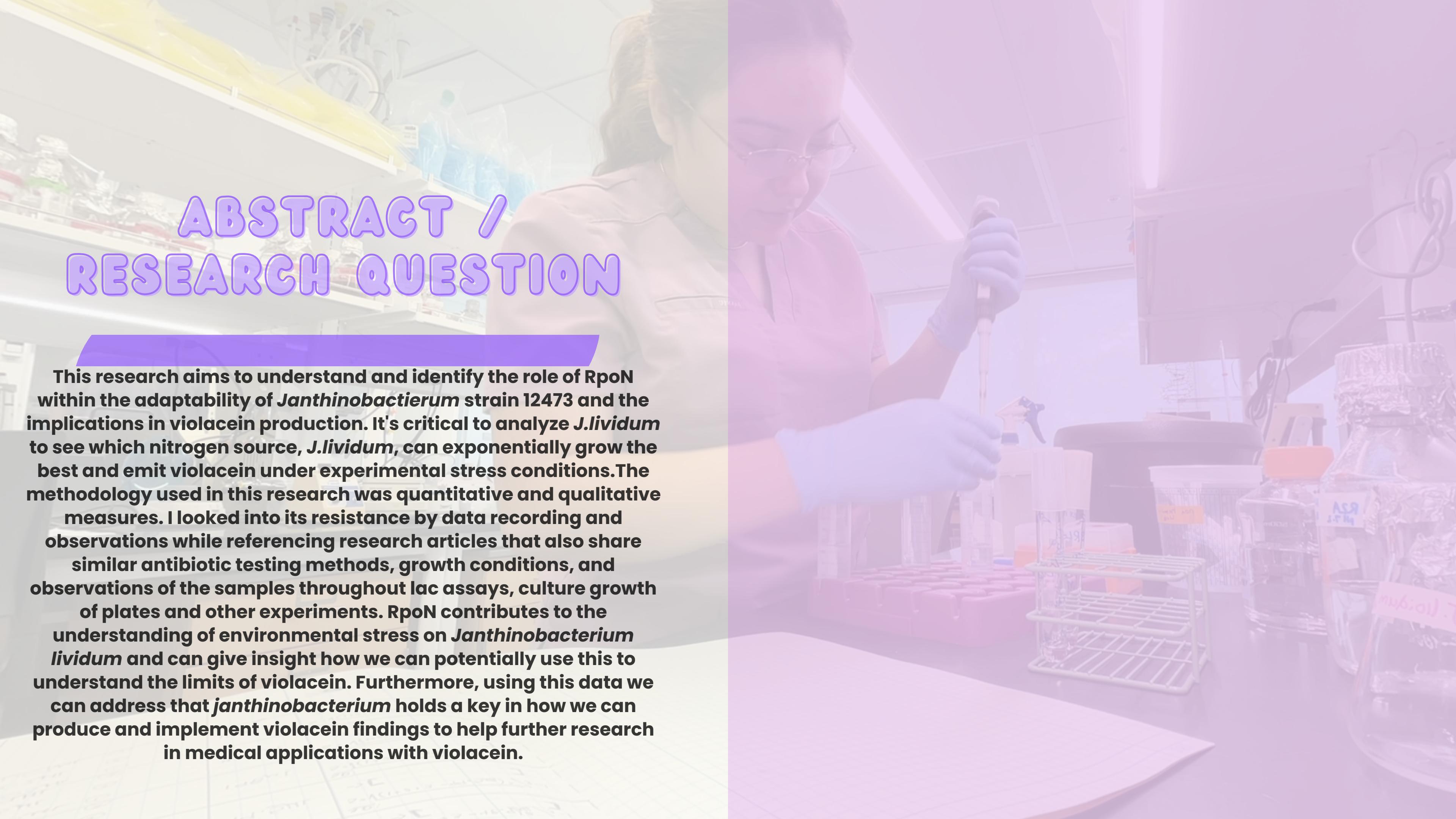
A defense mechanism to fight off bacteria, fungi

AUTOCLAVE

Used to sterilize, media, water, and clean tools

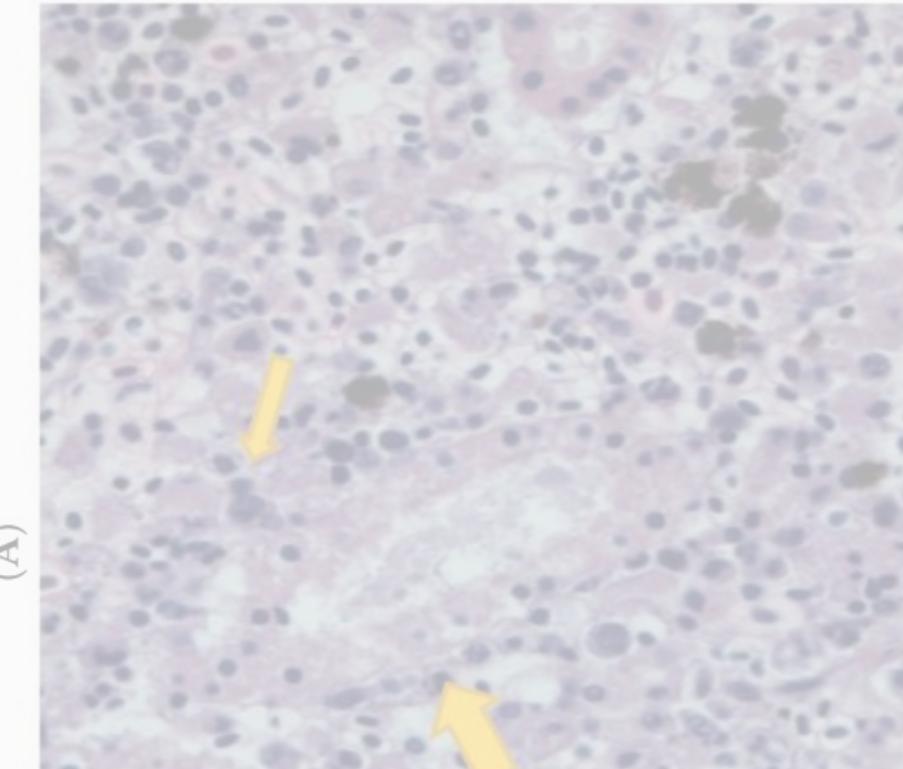
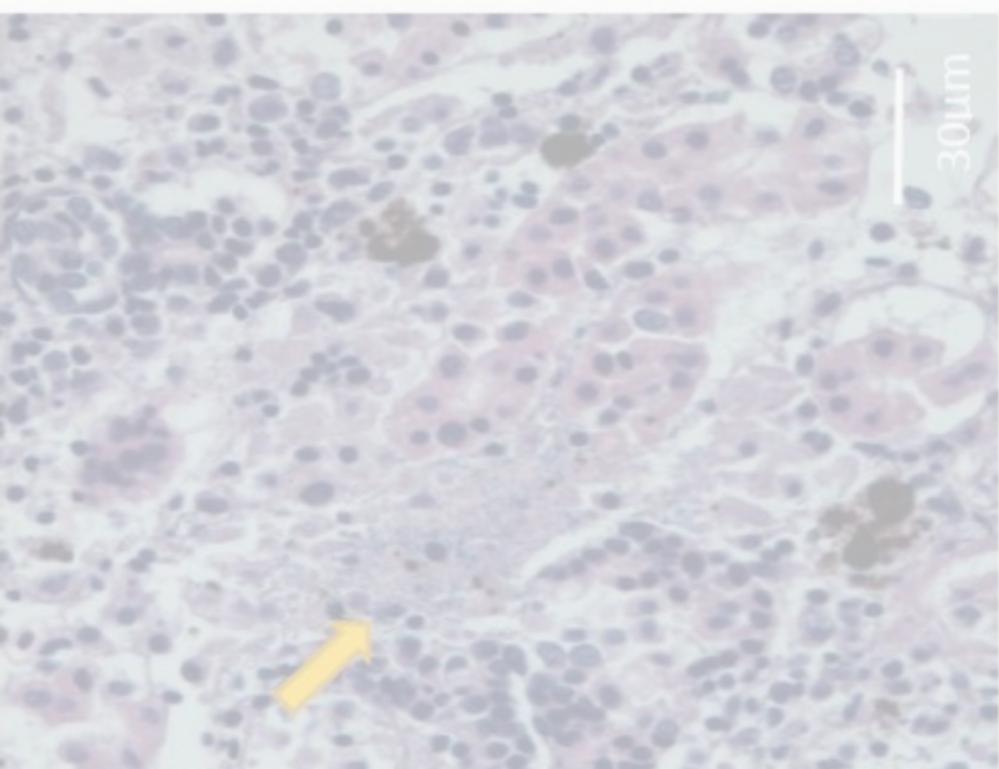
PLASMID

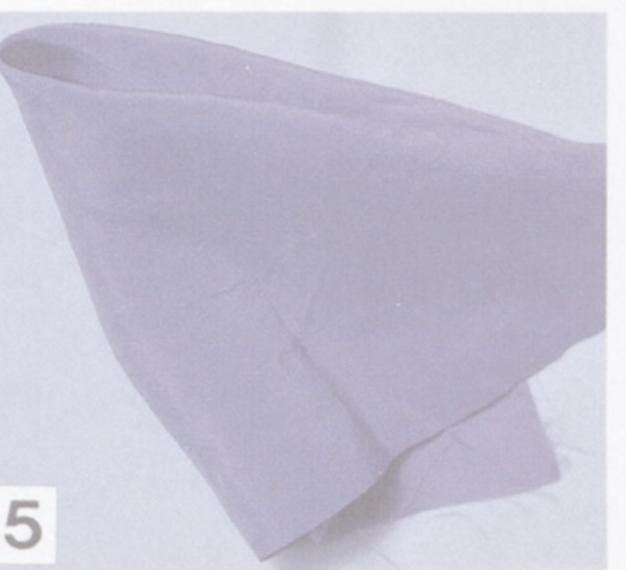
Tiny piece of DNA


AGENDA

QUESTIONS AT THE END !!

ABSTRACT / RESEARCH QUESTION


This research aims to understand and identify the role of RpoN within the adaptability of *Janthinobacterium* strain 12473 and the implications in violacein production. It's critical to analyze *J.lividum* to see which nitrogen source, *J.lividum*, can exponentially grow the best and emit violacein under experimental stress conditions. The methodology used in this research was quantitative and qualitative measures. I looked into its resistance by data recording and observations while referencing research articles that also share similar antibiotic testing methods, growth conditions, and observations of the samples throughout lac assays, culture growth of plates and other experiments. RpoN contributes to the understanding of environmental stress on *Janthinobacterium lividum* and can give insight how we can potentially use this to understand the limits of violacein. Furthermore, using this data we can address that *janthinobacterium* holds a key in how we can produce and implement violacein findings to help further research in medical applications with violacein.

BACKGROUND ON *J. LIVIDUM*

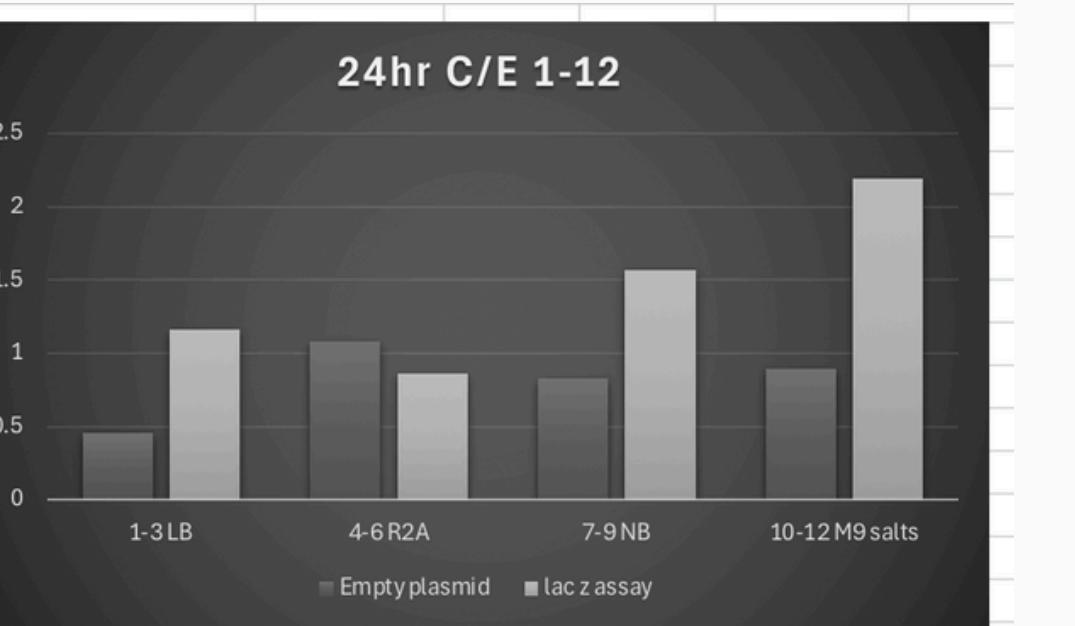
Janthinobacterium lividum, a gram negative soil-dwelling bacterium commonly found in lakes, soil, rivers, and arctic glaciers. *J. lividum* has become more prevalent in science research because of the interesting research studies it's involved in. One of the studies *J. lividum* has negatively affected trout industries in Korea, a popular food source in Asian countries. The research focused on the infection process the bacteria had on the rainbow trout. However, in another study *J. lividum* produces violacein that emits a purple color when fighting off fungi, and bacteria. Violacein is an important byproduct of this bacteria that aids in medical applications. An article published by American Society for Microbiology, states the strain 12473 of *J. lividum* helps in biosynthesis of the antibiotic daptomycin and anti-cancer compound epothilone.

In Addition, the violacein production of *J. lividum* is affected by environmental stress in global locations, it is found. Meaning whether it's located in The Americas, Korea, and Europe or Antarctica, environmental factors affect the strain by salinity levels, soil components, temperature the strain is found in. Therefore, Knowing this it's important to study and continually test this adaptive bacteria's resistance, metabolism and growth conditions when fighting off bacteria and fungi. Therefore, by using RpoN we can understand how *janthinobacterium lividum* regulates its gene expression enabling the transcription of certain genes, particularly those involved in nitrogen metabolism and induction of violacein.

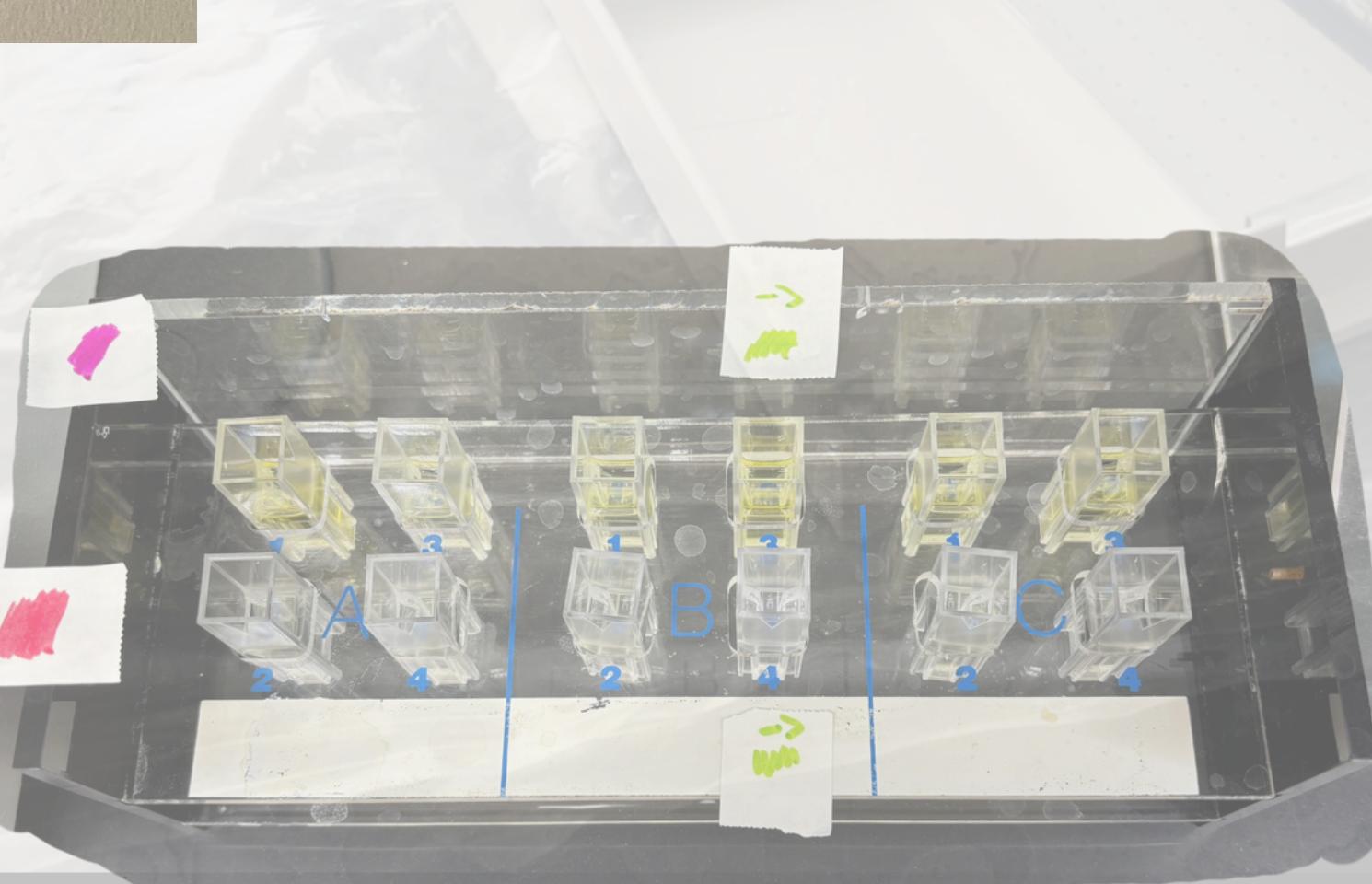
METHODS USED:

Lac assays / plate streaking
abs buffer making / excel
defending / autoclave
filtration/electroporation and electrophoresis
media culture
biofilm prep

The quantitative data I analyzed a table of an absorbance spectrum of my samples at 420 & 600 comparing KNO₃ and NH₄Cl interactions with a *J.lividum*.


Quantitative data in my research also looks at positive or negative outcomes on growth of bacteria or emission of the color purple which means that violacein is working and also keeping note of the amount of grams I used while creating my own stocks and media.

Some of the qualitative data while studying *J.lividum*, noting observations of color and taking pictures and videos throughout my research experiment to note how I observed results and performed techniques.



Data tables

	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P
1	Sample #	Abs 600	Actual Abs 6	Srt (min)	End (min)	RXN time (Abs 420	Miller unit	Miller mean un	STRD DIV						
2	M1	0.261	1.57	1.5	1337.5	1336	0.622	2.973	2.415	0.53776709						
3	M2	0.130	0.780	1.5	1337.5	1336	0.198	1.900	2.415	0.53776709						
4	M3	0.162	0.972	1.5	1337.5	1336	0.308	2.372	2.415	0.53776709						
5	M4	0.230	1.38	0.5	1336.5	1336	0.657	3.564	2.622	0.85393108						
6	M5	0.236	1.42	0.5	1336.5	1336	0.359	1.898	2.622	0.85393108						
7	M6	0.193	1.16	0.5	1336.5	1336	0.372	2.405	2.622	0.85393108						
8	R1	0.210	1.26	13.5	1340.5	1327	0.037	0.221	0.269	0.05930713						
9	R2	0.116	0.696	13.5	1340.5	1327	0.031	0.336	0.269	0.05930713						
10	R3	0.155	0.930	13.5	1340.5	1327	0.031	0.251	0.269	0.05930713						
11	R4	0.270	1.62	13.0	1338.5	1325.5	0.016	0.075	0.123	0.05612797						
12	R5	0.143	0.858	13.0	1338	1325	0.021	0.185	0.123	0.05612797						
13	R6	0.249	1.49	13.0	1338	1325	0.022	0.111	0.123	0.05612797						
14																
15																
16	KEY	KEY														
17	KNO3	PBR1 1007	Ammonium	0.269	2.415	0.0593071	0.53776709	STDEV E-pla	STDEV lac							
18	NH4Cl	PBBR MSC-5	Nitrate	0.123	2.622	0.056128	0.85393108									
19																
20																
21																
52																
53																
54																
55	24 hr) C/E	Empty plasmid	lac z assay	STDEV E-plasmid	STDEV lacZ											
56	1-3 LB	0.458046698	1.15820572	0.179892526	0.510677433											
57	4-6 R2A	1.077480779	0.860362553	0.369587095	0.37580940											
58	7-9 NB	0.828254858	1.566486526	0.175675079	0.522243362											
59	10-12 M9 salts	0.890422181	2.192038532	0.223444980	1.437624475											
60																
61																
62																
63																
64																
65																
66																
67																
68																
69																
70																
71	48 hr) C/E	Empty plasmid	lac z assay	STDEV E-plasmid	STDEV lacZ											
72	1-3 LB	1.663876351	3.577226618	0.373650514	1.372109119											
73	4-6 R2A	0.591348803	0.519973984	0.198019455	0.155906124											
74	7-9 NB	0.463967324	2.913953664	0.022533732	0.847926393											
75	10-12 M9 salts	0.952623189	6.058897015	0.197478494	3.128089222											
76																
77																
78																
79																

1	Sample	Abs 600	Act abs 600	RXN Srt (min)	RXN end (min)	RXN time mean	Abs 420	Miller units	Miller mean units	STRD DIV
2	c1	0.071	0.852	1.0	1394	1393.0	0.079	0.665635353	0.458046698	0.179892526
3	c2	0.068	0.816	1.0	1394	1393.0	0.041	0.360697043	0.458046698	0.179892526
4	c3	0.086	1.032	1.0	1394	1393.0	0.050	1.347807699	0.458046698	0.179892526
5	c4	0.017	0.204	1.0	1394	1393.0	0.031	1.090886167	1.077480779	0.369587095
6	c5	0.029	0.348	1.0	1394	1393.0	0.034	0.701372214	1.077480779	0.369587095
7	c6	0.027	0.324	1.0	1394	1393.0	0.065	1.440181507	1.077480779	0.369587095
8	c7	0.039	0.468	1.0	1394	1393.0	0.047	1.720942932	0.828254858	0.175675079
9	c8	0.040	0.480	1.0	1394	1393.0	0.049	1.732808281	0.828254858	0.175675079
10	c9	0.047	0.564	1.0	1394	1393.0	0.081	1.03099082	0.828254858	0.175675079
11	c10	0.049	0.588	1.0	1394	1393.0	0.086	1.049953363	0.890422181	0.223444980
12	c11	0.065	0.780	1.0	1394	1393.0	0.069	0.635043349	0.890422181	0.223444980
13	c12</									

LIMITATIONS

LIMITATIONS THAT WERE PRESENT

- LIMITED TIME I HAD WITH THIS SUMMER PROJECT
- MY KNOWLEDGE OF TERMINOLOGY WAS LIMITED WHEN STARTING A MICROBIOLOGY PROJECT.
- BEING TRANSPARENT ON % ERROR

WHATS NEXT ?

FALL 2024

BIOFILM ANALYSIS

LAC ASSAYS ON 4 MORE N-SOURCES

PUBLISH AND CREATE A POSTER

ASM CONFERENCE

ACKNOWLEDGMENTS

REFERENCES

- KONTYUSHIN, A. (1930). PRODUCTION OF BLUE-VIOLET PIGMENT BY JANTHINOBACTERIUM LIVIDUM ISOLATED FROM RAW SILK AND DYEING WITH THE PIGMENT. KONTYUSHIGEN, 66(5), 377.
[:10.11416/KONTYUSHIGEN1930.66.377](https://doi.org/10.11416/KONTYUSHIGEN1930.66.377)
- SHIVAJI, S., RAY, M.K., KUMAR, G.S. ET AL. IDENTIFICATION OF JANTHINOBACTERIUM LIVIDUM FROM THE SOILS OF THE ISLANDS OF SCOTIA RIDGE AND FROM ANTARCTIC PENINSULA. POLAR BIOL 11, 267-271 (1991). [HTTPS://DOI.ORG/10.1007/BF00238461](https://doi.org/10.1007/BF00238461)
- OH, W. T., GIRI, S. S., YUN, S., KIM, H. J., KIM, S. G., KIM, S. W., KANG, J. W., HAN, S. J., KWON, J., JUN, J. W., & PARK, S. C. (2019). JANTHINOBACTERIUM LIVIDUM AS AN EMERGING PATHOGENIC BACTERIUM AFFECTING RAINBOW TROUT (*ONCORHYNCHUS MYKISS*) FISHERIES IN KOREA. PATHOGENS (BASEL, SWITZERLAND), 8(3), 146. [HTTPS://DOI.ORG/10.3390/PATHOGENS8030146](https://doi.org/10.3390/PATHOGENS8030146)
- WU, X., KAZAKOV, A. E., GUSHGARI-DOYLE, S., YU, X., TROTTER, V., STUART, R. K., & CHAKRABORTY, R. (2021, DECEMBER 22). COMPARATIVE GENOMICS REVEALS INSIGHTS INTO INDUCTION OF VIOLACEIN BIOSYNTHESIS AND ADAPTIVE EVOLUTION IN JANTHINOBACTERIUM. *MICROBIOLOGY SPECTRUM*, 9(3), E0141421. [HTTPS://DOI.ORG/10.1128/SPECTRUM.01414-21](https://doi.org/10.1128/SPECTRUM.01414-21)